Publication Date

7-21-2023

Journal

iScience

DOI

10.1016/j.isci.2023.107120

PMID

37361876

PMCID

PMC10271916

PubMedCentral® Posted Date

7-16-2023

PubMedCentral® Full Text Version

Post-Print

Published Open-Access

yes

Keywords

Virology

Abstract

Emerging variants of SARS-CoV-2 call for frequent changes in vaccine antigens. Nucleic acid-based vaccination strategies are superior as the coding sequences can be easily altered with little impact on downstream production. mRNA vaccines, including variant-specific boosters, are approved for SARS-CoV-2. Here, we tested the efficacy of DNA vaccines against the SARS-CoV-2 Spike aided by the AddaS03 adjuvant using electroporation and compared their immunogenicity with an approved mRNA vaccine (mRNA-1273). DNA vaccination elicited robust humoral and cellular immune responses in C57BL/6 mice with Spike-specific antibody neutralization and T cells produced from 20 μg DNA vaccines similar to that from 0.5 μg mRNA-1273. Furthermore, a Nanoplasmid-based vector further increased the immunogenicity. Our results indicate that adjuvants are critical to the efficacy of DNA vaccines in stimulating robust immune responses against Spike, highlighting the feasibility of plasmid DNA as a rapid nucleic acid-based vaccine approach against SARS-CoV-2 and other emerging infectious diseases.

fx1.jpg (288 kB)
Graphical Abstract

Comments

This article has been corrected. See iScience. 2024 Oct 15;27(10):110969.

Associated Data

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.