Publication Date
12-20-2024
Journal
iScience
DOI
10.1016/j.isci.2024.111282
PMID
39628564
PMCID
PMC11613175
PubMedCentral® Posted Date
10-28-2024
PubMedCentral® Full Text Version
Post-Print
Published Open-Access
yes
Keywords
Physiology, Cell biology, Transcriptomics
Abstract
The maintenance of homeostasis and rapid regeneration of the urothelium following stress are critical for bladder function. Here, we identify a key role for IFRD1 in maintaining urothelial homeostasis in a mouse model. We demonstrate that the murine bladder expresses IFRD1 at homeostasis, particularly in the urothelium, and its loss alters the global transcriptome with significant accumulation of endolysosomes and dysregulated uroplakin expression pattern. We show that IFRD1 interacts with mRNA-translation-regulating factors in human urothelial cells. Loss of Ifrd1 leads to disrupted proteostasis, enhanced endoplasmic reticulum (ER stress) with activation of the PERK arm of the unfolded protein response pathway, and increased oxidative stress. Ifrd1-deficient bladders exhibit urothelial cell apoptosis/exfoliation, enhanced basal cell proliferation, reduced differentiation into superficial cells, increased urothelial permeability, and aberrant voiding behavior. These findings highlight a crucial role for IFRD1 in urothelial homeostasis, suggesting its potential as a therapeutic target for bladder dysfunction.
Graphical Abstract
Comments
Associated Data