Publication Date
2-2016
Journal
Statistical Methods in Medical Research
DOI
10.1177/0962280212441965
PMID
22421539
PMCID
PMC3883897
PubMedCentral® Posted Date
1-7-2014
PubMedCentral® Full Text Version
Author MSS
Published Open-Access
yes
Keywords
Alzheimer Disease, Bayes Theorem, Bias (Epidemiology), Binomial Distribution, Biostatistics, Computer Simulation, Disease Progression, Humans, Likelihood Functions, Models, Statistical, Regression Analysis
Abstract
Misclassification occurring in either outcome variables or categorical covariates or both is a common issue in medical science. It leads to biased results and distorted disease-exposure relationships. Moreover, it is often of clinical interest to obtain the estimates of sensitivity and specificity of some diagnostic methods even when neither gold standard nor prior knowledge about the parameters exists. We present a novel Bayesian approach in binomial regression when both the outcome variable and one binary covariate are subject to misclassification. Extensive simulation results under various scenarios and a real clinical example are given to illustrate the proposed approach. This approach is motivated and applied to a dataset from the Baylor Alzheimer's Disease and Memory Disorders Center.
Included in
Medicine and Health Sciences Commons, Neuroscience and Neurobiology Commons, Statistical Methodology Commons, Statistical Models Commons