Publication Date

1-1-2024

Journal

PLoS One

DOI

10.1371/journal.pone.0297846

PMID

38412189

PMCID

PMC10898740

PubMedCentral® Posted Date

2-27-2024

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Animals, Humans, Mice, Drosophila, Drosophila melanogaster, Hearing, Vertebrates, Deafness, Mammals

Abstract

Johnston's organ, the Drosophila auditory organ, is anatomically very different from the mammalian organ of Corti. However, recent evidence indicates significant cellular and molecular similarities exist between vertebrate and invertebrate hearing, suggesting that Drosophila may be a useful platform to determine the function of the many mammalian deafness genes whose underlying biological mechanisms are poorly characterized. Our goal was a comprehensive screen of all known orthologues of mammalian deafness genes in the fruit fly to better understand conservation of hearing mechanisms between the insect and the fly and ultimately gain insight into human hereditary deafness. We used bioinformatic comparisons to screen previously reported human and mouse deafness genes and found that 156 of them have orthologues in Drosophila melanogaster. We used fluorescent imaging of T2A-GAL4 gene trap and GFP or YFP fluorescent protein trap lines for 54 of the Drosophila genes and found 38 to be expressed in different cell types in Johnston's organ. We phenotypically characterized the function of strong loss-of-function mutants in three genes expressed in Johnston's organ (Cad99C, Msp-300, and Koi) using a courtship assay and electrophysiological recordings of sound-evoked potentials. Cad99C and Koi were found to have significant courtship defects. However, when we tested these genes for electrophysiological defects in hearing response, we did not see a significant difference suggesting the courtship defects were not caused by hearing deficiencies. Furthermore, we used a UAS/RNAi approach to test the function of seven genes and found two additional genes, CG5921 and Myo10a, that gave a statistically significant delay in courtship but not in sound-evoked potentials. Our results suggest that many mammalian deafness genes have Drosophila homologues expressed in the Johnston's organ, but that their requirement for hearing may not necessarily be the same as in mammals.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.