Publication Date
11-20-2024
Journal
Genome Research
DOI
10.1101/gr.279273.124
PMID
39358015
PMCID
PMC11610458
PubMedCentral® Posted Date
11-1-2024
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Keywords
Humans, Nanopore Sequencing, Genome, Human, Genetic Variation, Human Genome Project, Polymorphism, Single Nucleotide, High-Throughput Nucleotide Sequencing, Sequence Analysis, DNA
Abstract
Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP) Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.
Included in
Biological Phenomena, Cell Phenomena, and Immunity Commons, Biomedical Informatics Commons, Genetics and Genomics Commons, Medical Genetics Commons, Medical Molecular Biology Commons, Medical Specialties Commons
Comments
Associated Data