Publication Date

1-1-2024

Journal

Molecular & Cellular Proteomics

DOI

10.1016/j.mcpro.2023.100682

PMID

37993103

PMCID

PMC10716774

PubMedCentral® Posted Date

11-21-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Keywords

Humans, Data Mining, Databases, Factual, Natural Language Processing, PubMed, phosphoproteomics, text mining, natural language processing, deep learning

Abstract

Global phosphoproteomics experiments quantify tens of thousands of phosphorylation sites. However, data interpretation is hampered by our limited knowledge on functions, biological contexts, or precipitating enzymes of the phosphosites. This study establishes a repository of phosphosites with associated evidence in biomedical abstracts, using deep learning-based natural language processing techniques. Our model for illuminating the dark phosphoproteome through PubMed mining (IDPpub) was generated by fine-tuning BioBERT, a deep learning tool for biomedical text mining. Trained using sentences containing protein substrates and phosphorylation site positions from 3000 abstracts, the IDPpub model was then used to extract phosphorylation sites from all MEDLINE abstracts. The extracted proteins were normalized to gene symbols using the National Center for Biotechnology Information gene query, and sites were mapped to human UniProt sequences using ProtMapper and mouse UniProt sequences by direct match. Precision and recall were calculated using 150 curated abstracts, and utility was assessed by analyzing the CPTAC (Clinical Proteomics Tumor Analysis Consortium) pan-cancer phosphoproteomics datasets and the PhosphoSitePlus database. Using 10-fold cross validation, pairs of correct substrates and phosphosite positions were extracted with an average precision of 0.93 and recall of 0.94. After entity normalization and site mapping to human reference sequences, an independent validation achieved a precision of 0.91 and recall of 0.77. The IDPpub repository contains 18,458 unique human phosphorylation sites with evidence sentences from 58,227 abstracts and 5918 mouse sites in 14,610 abstracts. This included evidence sentences for 1803 sites identified in CPTAC studies that are not covered by manually curated functional information in PhosphoSitePlus. Evaluation results demonstrate the potential of IDPpub as an effective biomedical text mining tool for collecting phosphosites. Moreover, the repository (http://idppub.ptmax.org), which can be automatically updated, can serve as a powerful complement to existing resources.

ga1 (1).jpg (305 kB)
Graphical Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.