Children’s Nutrition Research Center Staff Publications

Language

English

Publication Date

1-1-2024

Journal

F1000Research

DOI

10.12688/f1000research.152466.2

PMID

40547213

PMCID

PMC12181766

PubMedCentral® Posted Date

5-19-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Background: Variables such as dietary intake are measured with error yet frequently used in observational epidemiology. Although this limitation is sometimes noted, these variables are still often modeled as covariates without formal correction or sincere dialogue about measurement unreliability potentially weakening the validity of statistical conclusions. Further, larger sample sizes increase power (bias) to detect spurious correlations. Counterintuitively, recent work suggested a non-monotonic relationship between confounder unreliability and how much controlling for the confounder reduces (or induces) bias when testing for an exposure-outcome association. If true, such non-monotonicity would be especially concerning for applications such as nutrition, where measurement reliability varies substantially, and large sample sizes are common.

Methods: We offer a detailed derivations of the square partial correlation between the outcome and exposure, controlling for the confounder. In our derivation, the measurement reliabilities of exposures and confounders are not arbitrarily constrained to be equal. Further, our theoretical results are investigated using simulations.

Results: Reassuringly, these derivations and simulations show that the counterintuitive non-monotonicity relationship between confounder unreliability and how much controlling for the confounder reduces (or induces) bias when testing for an exposure-outcome association is an artifact of the arbitrary constraint which forces the measurement reliabilities of exposures and confounders to be equal, which that does not always hold.

Conclusions: The profound and manifold effects of measurement error on estimation and statistical conclusion validity in realistic scenarios indicate that merely mentioning measurement error as a limitation and then dispensing with it is not an adequate response. We also explore questions for optimal study design subject to resource constraints when considering reliability of exposures, covariates, and outcomes.

Keywords

Humans, Confounding Factors, Epidemiologic, Bias, Research Design, Reproducibility of Results

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.