Children’s Nutrition Research Center Staff Publications

Language

English

Publication Date

9-20-2024

Journal

Statistics in Medicine

DOI

10.1002/sim.10165

PMID

38978160

PMCID

PMC11977555

PubMedCentral® Posted Date

4-8-2025

PubMedCentral® Full Text Version

Author MSS

Abstract

Wearable devices such as the ActiGraph are now commonly used in research to monitor or track physical activity. This trend corresponds with the growing need to assess the relationships between physical activity and health outcomes, such as obesity, accurately. Device-based physical activity measures are best treated as functions when assessing their associations with scalar-valued outcomes such as body mass index. Scalar-on-function regression (SoFR) is a suitable regression model in this setting. Most estimation approaches in SoFR assume that the measurement error in functional covariates is white noise. Violating this assumption can lead to underestimating model parameters. There are limited approaches to correcting measurement errors for frequentist methods and none for Bayesian methods in this area. We present a non-parametric Bayesian measurement error-corrected SoFR model that relaxes all the constraining assumptions often involved with these models. Our estimation relies on an instrumental variable allowing a time-varying biasing factor, a significant departure from the current generalized method of moment (GMM) approach. Our proposed method also permits model-based grouping of the functional covariate following measurement error correction. This grouping of the measurement error-corrected functional covariate allows additional ease of interpretation of how the different groups differ. Our method is easy to implement, and we demonstrate its finite sample properties in extensive simulations. Finally, we applied our method to data from the National Health and Examination Survey to assess the relationship between wearable device-based measures of physical activity and body mass index in adults in the United States.

Keywords

Bayes Theorem, Humans, Exercise, Body Mass Index, Computer Simulation, Models, Statistical, Regression Analysis, Obesity, Bias, Actigraphy, Bayesian, Energy Expenditure, Instrumental variables, Measurement error, Physical activity, Scalar-on-function

Published Open-Access

no

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.