Date of Graduation

12-2022

Document Type

Dissertation (PhD)

Program Affiliation

Biostatistics, Bioinformatics and Systems Biology

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Ying Yuan, Ph.D.

Committee Member

Yisheng Li, Ph.D.

Committee Member

Suyu Liu, Ph.D.

Committee Member

Ruitao Lin, Ph.D.

Committee Member

Melinda Yates, Ph.D.

Abstract

The landscape of drug development in oncology has changed from conventional chemotherapies to molecular targeted therapies and immunotherapies, which provide innovative therapeutic modalities for treating cancers. These novel therapeutic agents work through mechanisms that fundamentally differ from standard chemotherapeutic agents, making the conventional trial design paradigm inefficient and dysfunctional. Specifically, the focus of dose-finding trials has shifted from finding the maximum tolerated dose (MTD) to the optimal biological dose (OBD), defined as the dose that optimizes the risk–benefit tradeoff. How to accurately identify the OBD and its dosing schedule is of great importance to maximize efficacy and safety of targeted therapies and immunotherapies. The US Food and Drug Administration (FDA) Oncology Center of Excellence recently launched Project Optimus to accelerate this paradigm shift. In addition, once the OBD and recommended phase 2 dose (PR2D) are determined, how to effectively monitor short-term and long-term efficacy in phase II trials, in particular basket trials, is critical for the development of targeted therapies and immunotherapies.

In this dissertation, we propose Bayesian adaptive clinical trial designs to address these challenges. Specifically, we propose (a) a novel Bayesian dose-finding design to find the OBD of drug combination based on risk-benefit tradeoff, (b) a Bayesian adaptive design that simultaneously optimizes dose and schedule based on efficacy, toxicity, and PK data, and (c) a phase II basket trial design that uses Bayesian hierarchical model to borrow information across treatment arms for efficient termination of ineffective treatment arms based on short-term and long-term endpoints. We conduct extensive simulation studies to evaluate the operating characteristics of the proposed designs. Results show that the proposed designs outperform existing approaches and provide robust and efficient tools to accelerate the development of targeted therapies and immunotherapies.

Keywords

Early phase clinical trial design, dose-finding, dose-schedule finding, monitoring rules

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.