Date of Graduation

12-2011

Document Type

Dissertation (PhD)

Program Affiliation

Biomedical Sciences

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Paul Chiao

Committee Member

Peng Huang

Committee Member

Wei Zhang

Committee Member

Shao-Cong Sun

Committee Member

Bingliang Fang

Abstract

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States and the fifth leading cause of cancer-related mortality worldwide. Pancreatic cancer is a big challenge in large due to the lack of early symptoms. In addition, drug resistance is a major obstacle to the success of chemotherapy in pancreatic cancer. The underlying mechanism of drug resistance in human pancreatic cancers is not well understood. Better understanding of the mechanism of molecular pathways in human pancreatic cancers can help to identify the novel therapeutic target candidates, and develop the new preventive and clinic strategies to improve patient survival. We discovered that TAK1 is overexpressed in pancreatic cancer cell lines and patient tumor tissues. We demonstrated that the elevated activity of TAK1 is caused by its binding partner TAB1. Knocking down of TAK1 in pancreatic cancer cells with RNAi technique resulted in cell apoptosis and significantly reduces the size of tumors in mice and made a chemotherapy drug more potent. Targeting the kinase activity of TAK1 with the selective inhibitor LY2610956 strongly synergized in vitro with the antitumor activity of gemcitabine, oxaliplatin, or irinotecan on pancreatic cancer cells. These findings highlighted that TAK1 could be a potential therapeutic target for pancreatic cancer.

We also demonstrated that TAK activity is regulated by its binding protein TAB1. We defined a minimum TAB1 sequence which is required and sufficient for TAK1 kinase activity. We created a recombinant TAK1-TAB1 C68 fusion form which has highly kinase activity. This active form could is used for screening TAK1 inhibitors.

In addition, several posttranslational modifications were identified in our study. The acetylation of lysine 158 on TAK1 is required for kinase activity. This site is conserved throughout all of kinase. Our findings may reveal a new mechanism by which kinase activity is regulated.

Keywords

pancreatic cancer, TAK1, TAB1, acetylation

Share

COinS