Date of Graduation
5-2012
Document Type
Dissertation (PhD)
Program Affiliation
Cancer Biology
Degree Name
Doctor of Philosophy (PhD)
Advisor/Committee Chair
Dennis P.M. Hughes
Committee Member
Eugenie S. Kleinerman
Committee Member
Gary Gallick
Committee Member
Francois Claret
Committee Member
Michael Blackburn
Abstract
The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are preferentially farnesylated.
Small molecule inhibitors of farnesyltransferase (FTIs) have been developed as a means to alter Ras signaling. Our initial studies with FTIs in malignant and non-malignant cells revealed FTI-induced cell cycle arrest, reduced proliferation, and increased Ras signaling. These findings led us to the hypothesis that FTI induced increased GG’d Ras. We further hypothesized that the specific effects of FTI on cell cycle and growth result from increased signal strength of GG’d Ras.
Our results did show that increase in GG’d K-Ras in particular results in reduced cell viability and cell cycle arrest. Genetically engineered constructs capable of only one type of prenylation confirmed that GG’d K-Ras recapitulated the effect of FTI in 293T cells. In tumor cell lines ERK and p38 MAPK pathways were both strongly activated in response to FTI, indicating the increased activity of GG’d K-Ras results in antiproliferative signals specifically through these pathways. These results collectively indicate FTI increases active GG’d K-Ras which activates ERK and p38 MAPKs to reduced cell viability and induce cell cycle arrest in malignant cells. This is the first report that identifies increased activity of GG’d K-Ras contributes to antineoplastic effects from FTI by increasing the activity of downstream MAPKs.
Our observations suggest increased GG’d K-Ras activity, rather than inhibition of farnesylated Ras, is a major source of the cytostatic and cytotoxic effects of FTI. Our data may allow for determination of which patients would benefit from FTI by excluding tumors or diseases which have strong K-Ras signaling.
Keywords
Ras, Farnesyltransferase, Farnesyltransferase inhibitor, Geranylgeranylated, ERK MAPK, p38 MAPK, Cancer
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Biology Commons, Cancer Biology Commons, Diseases Commons, Laboratory and Basic Science Research Commons, Lipids Commons, Other Chemicals and Drugs Commons, Pharmaceutical Preparations Commons, Pharmacology, Toxicology and Environmental Health Commons