Date of Graduation
12-2012
Document Type
Thesis (MS)
Program Affiliation
Microbiology and Molecular Genetics
Degree Name
Masters of Science (MS)
Advisor/Committee Chair
Michael C. Lorenz, Ph.D.
Committee Member
Kevin Morano, Ph.D.
Committee Member
Hung Ton-That, Ph.D.
Committee Member
Ziyin Li, Ph.D.
Committee Member
Jeffrey A. Frost, Ph.D.
Abstract
Candida albicans is the most important fungal pathogen of humans. Transcript profiling studies show that upon phagocytosis by macrophages, C. albicans undergoes a massive metabolic reorganization activating genes involved in alternative carbon metabolism, including the glyoxylate cycle, β-oxidation and gluconeogenesis. Mutations in key enzymes such as ICL1 (glyoxylate cycle) and FOX2 (fatty acid β-oxidation) revealed that alternative carbon metabolic pathways are required for full virulence in C. albicans. These studies indicate C. albicans uses non-preferred carbon sources allowing its adaptation to microenvironments were nutrients are scarce. It has become apparent that the regulatory networks required for regulation of alternative carbon metabolism in C. albicans are considerably different from the Saccharomyces cerevisiae paradigm and appear more analogous to the Aspergillus nidulans systems. Well-characterized transcription factors in S. cerevisiae have no apparent phenotype or are missing in C. albicans.
CTF1 was found to be a single functional homolog of the A. nidulans FarA/FarB proteins, which are transcription factors required for fatty acid utilization. Both FOX2 and ICL1 were found to be part of a large CTF1 regulon. To increase our understanding of how CTF1 regulates its target genes, including whether regulation is direct or indirect, the FOX2 and ICL1 promoter regions were analyzed using a combination of bioinformatics and promoter deletion analysis. To begin characterizing the FOX2 and ICL1 promoters, 5’ rapid amplification of cDNA ends (5’RACE) was used to identify two transcriptional initiation sites in FOX2 and one in ICL1. GFP reporter assays show FOX2 and ICL1 are rapidly expressed in the presence of alternative carbon sources. Both FOX2 and ICL1 harbor the CCTCGG sequence known to be bound by the Far proteins, hence rendering the motif as a putative CTF1 DNA binding element. In this study, the CCTCGG sequence was found to be essential for FOX2 regulation. However, this motif does not appear to be equally important for the regulation of ICL1. This study supports the notion that although C. albicans has diverged from the paradigms of model fungi, C. albicans has made specific adaptations to its transcription-based regulatory network that may contribute to its metabolic flexibility.
Keywords
regulation of carbon metabolism in fungi, promoter dissection