Date of Graduation

8-2016

Document Type

Dissertation (PhD)

Program Affiliation

Medical Physics

Degree Name

Doctor of Philosophy (PhD)

Advisor/Committee Chair

Rajat Kudchadker, PhD

Committee Member

Geoffrey Ibbott, PhD

Committee Member

Steven Frank, MD

Committee Member

Jason Stafford, PhD

Committee Member

Arvind Rao, PhD

Abstract

Low-dose-rate prostate brachytherapy involves the implantation of tiny radioactive seeds into the prostate to treat prostate cancer. The current standard post-implant imaging modality is computed tomography (CT). On CT images, the radioactive seeds can be distinctively localized but delineation of the prostate and surrounding soft tissue is poor. Magnetic resonance imaging (MRI) provides better prostate and soft tissue delineation, but seed localization is difficult. To aid with seed localization, MRI markers with encapsulated contrast agent that provide positive-contrast on MRI images (Sirius MRI markers; C4 Imaging, Houston, TX) have been proposed to be placed adjacent to the negative-contrast seeds. This dissertation describes the development of the Sirius MRI markers for prostate post-implant dosimetry.

First, I compared the dose-volume histogram and other dosimetry parameters generated by MIM Symphony (a brachytherapy treatment planning system that allow the use of MRI images for treatment planning; MIM Software Inc., Cleveland, OH) and VariSeed (a widely used brachytherapy treatment planning system; Varian Medical Systems, Inc., Palo Alto, CA), and found the dosimetry between both brachytherapy treatment planning systems to be comparable. To gain more insight into the MRI contrast characteristics of the Sirius MRI markers, I measured the Sirius MRI marker contrast agent's spin-lattice and spin-spin relaxivities, and studied the relaxation characteristics' dependence on MRI field strength, temperature, and orientation.

From the Sirius MRI marker's contrast agent relaxation characteristics, I systematically studied the effect of varying MRI scan parameters such as flip angle, number of excitations, bandwidth, field of view, slice thickness, and encoding steps, on the Sirius MRI markers' signal and contrast, as well as image noise, artifact and scan time. On patients implanted with Sirius MRI markers, I evaluated the visibility of the Sirius MRI markers and image artifacts. Lastly, I semi-automated the localization of markers and seeds to more enable the efficient incorporation of Sirius MRI markers as part of the clinical post-implant workflow.

Ultimately, the Sirius MRI markers may change the paradigm from CT-based to MRI-based post-implant dosimetry, for a more accurate understanding of dose-response relationships in patients undergoing low dose rate prostate brachytherapy.

Keywords

low dose rate, prostate, brachytherapy, MRI, markers

Share

COinS