Date of Graduation

5-2010

Document Type

Thesis (MS)

Program Affiliation

Medical Physics

Degree Name

Masters of Science (MS)

Advisor/Committee Chair

Geoffrey S. Ibbott, Ph.D.

Committee Member

David S. Followill, Ph.D.

Committee Member

X. Ronald Zhu, Ph.D.

Committee Member

Narayan Sahoo, Ph.D.

Committee Member

Susan Tucker, Ph.D.

Abstract

With an increasing number of institutions offering proton therapy, the number of multi-institutional clinical trials involving proton therapy will also increase in the coming years. The Radiological Physics Center monitors sites involved in clinical trials through the use of site visits and remote auditing with thermoluminescent dosimeters (TLD) and mailable anthropomorphic phantoms. Currently, there are no heterogeneous phantoms that have been commissioned to evaluate proton therapy. It was hypothesized that an anthropomorphic pelvis phantom can be designed to audit treatment procedures (patient simulation, treatment planning and treatment delivery) at proton facilities to confirm agreement between the measured dose and calculated dose within 5%/3mm with a reproducibility of 3%. A pelvis phantom originally designed for use with photon treatments was retrofitted for use in proton therapy. The relative stopping power (SP) of each phantom material was measured. Hounsfield Units (HU) for each phantom material were measured with a CT scanner and compared to the relative stopping power calibration curve. The tissue equivalency for each material was calculated. Two proton treatment plans were created; one which did not correct for material SP differences (Plan 1) and one plan which did correct for SP differences (Plan 2). Film and TLD were loaded into the phantom and the phantom was irradiated 3 times per plan. The measured values were compared to the HU-SP calibration curve and it was found that the stopping powers for the materials could be underestimated by 5-10%. Plan 1 passed the criteria for the TLD and film margins with reproducibility under 3% between the 3 trials. Plan 2 failed because the right-left film dose profile average displacement was -9.0 mm on the left side and 6.0 mm on the right side. Plan 2 was intended to improve the agreements and instead introduced large displacements along the path of the beam. Plan 2 more closely represented the actual phantom composition with corrected stopping powers and should have shown an agreement between the measured and calculated dose within 5%/3mm. The hypothesis was rejected and the pelvis phantom was found to be not suitable to evaluate proton therapy treatment procedures.

Keywords

proton therapy, dosimetry, phantoms, quality assurance

Share

COinS