Faculty, Staff and Student Publications

Publication Date

6-17-2023

Journal

International Journal of Molecular Sciences

Abstract

Up until recently, methods for generating floxed mice either conventionally or by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9 (CRISPR-associated protein 9) editing have been technically challenging, expensive and error-prone, or time-consuming. To circumvent these issues, several labs have started successfully using a small artificial intron to conditionally knockout (KO) a gene of interest in mice. However, many other labs are having difficulty getting the technique to work. The key problem appears to be either a failure in achieving correct splicing after the introduction of the artificial intron into the gene or, just as crucial, insufficient functional KO of the gene's protein after Cre-induced removal of the intron's branchpoint. Presented here is a guide on how to choose an appropriate exon and where to place the recombinase-regulated artificial intron (rAI) in that exon to prevent disrupting normal gene splicing while maximizing mRNA degradation after recombinase treatment. The reasoning behind each step in the guide is also discussed. Following these recommendations should increase the success rate of this easy, new, and alternative technique for producing tissue-specific KO mice.

Keywords

artificial intron, tissue-specific knockout, splicing, mRNA degradation, splicing prediction program

Comments

PMID: 37373404

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.