Faculty, Staff and Student Publications

Publication Date

7-1-2023

Journal

Medical Physics

Abstract

BACKGROUND: Current molecular breast imaging (MBI) images are limited to qualitative evaluation, not absolute measurement, of

PURPOSE: This work assesses the accuracy of previously-published and newly-proposed tumor and normal breast tissue

METHODS: Quantification techniques were tested in over 4000 simulated acquisitions of spherical and ellipsoid tumors with clinically relevant uptake conditions using a validated Monte Carlo application of the GE Discovery NM750b system. The evaluated techniques consisted of four tumor total activity methodologies (two single-detector-based and two geometric-mean-based), two tumor MBI volume methodologies (diameter-based and ROI-based), and two normal tissue activity concentration methodologies (single-detector-based and geometric-mean-based). The most accurate of these techniques were then used to estimate tumor activity concentrations and tumor to normal tissue relative activity concentrations (RC).

RESULTS: Single-detector techniques for tumor total activity quantification achieved mean (standard deviation) relative errors of 0.2% (4.3%) and 1.6% (4.4%) when using the near and far detector images, respectively and were more accurate and precise than the measured 8.1% (5.8%) errors of a previously published geometric-mean technique. Using these activity estimates and the true tumor volumes resulted in tumor activity concentration and RC errors within 10% of simulated values. The precision of tumor activity concentration and RC when using only MBI measurements were largely driven by the errors in estimating tumor MBI volume using planar images (± 30% inter-quartile range).

CONCLUSIONS: Planar MBI images were shown to accurately and reliably be used to estimate tumor total activities and normal tissue activity concentrations in this simulation study. However, volumetric tumor uptake measurements (i.e., absolute and relative concentrations) are limited by inaccuracies in MBI volume estimation using two-dimensional images, highlighting the need for either tomographic MBI acquisitions or anatomical volume estimates for accurate three-dimensional tumor uptake estimates.

Keywords

Humans, Neoplasms, Radionuclide Imaging, Breast, Mammography, Computer Simulation, Phantoms, Imaging

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.