Faculty, Staff and Student Publications
Publication Date
4-18-2023
Journal
Proceedings of the National Academy of Sciences of the United States of America
Abstract
Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.
Keywords
Humans, Clustered Regularly Interspaced Short Palindromic Repeats, Glycogen Synthase Kinase 3, Cell Line, Tumor, Leukemia, Nuclear Proteins, Repressor Proteins, genome editing, bromodomain inhibitor, KMT2A-rearranged leukemia, SPOP
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Hematology Commons, Hemic and Lymphatic Diseases Commons, Medical Sciences Commons, Oncology Commons
Comments
Supplementary Materials
PMID: 37036970