Faculty, Staff and Student Publications
Publication Date
4-1-2023
Journal
Medical Physics
Abstract
BACKGROUND/PURPOSE: Adequate image registration of anatomical and functional magnetic resonance imaging (MRI) scans is necessary for MR-guided head and neck cancer (HNC) adaptive radiotherapy planning. Despite the quantitative capabilities of diffusion-weighted imaging (DWI) MRI for treatment plan adaptation, geometric distortion remains a considerable limitation. Therefore, we systematically investigated various deformable image registration (DIR) methods to co-register DWI and T2-weighted (T2W) images.
MATERIALS/METHODS: We compared three commercial (ADMIRE, Velocity, Raystation) and three open-source (Elastix with default settings [Elastix Default], Elastix with parameter set 23 [Elastix 23], Demons) post-acquisition DIR methods applied to T2W and DWI MRI images acquired during the same imaging session in twenty immobilized HNC patients. In addition, we used the non-registered images (None) as a control comparator. Ground-truth segmentations of radiotherapy structures (tumour and organs at risk) were generated by a physician expert on both image sequences. For each registration approach, structures were propagated from T2W to DWI images. These propagated structures were then compared with ground-truth DWI structures using the Dice similarity coefficient and mean surface distance.
RESULTS: 19 left submandibular glands, 18 right submandibular glands, 20 left parotid glands, 20 right parotid glands, 20 spinal cords, and 12 tumours were delineated. Most DIR methods tookcase, with the exception of Elastix 23 which took ∼458 s to execute per case. ADMIRE and Elastix 23 demonstrated improved performance over None for all metrics and structures (Bonferroni-corrected p < 0.05), while the other methods did not. Moreover, ADMIRE and Elastix 23 significantly improved performance in individual and pooled analysis compared to all other methods.
CONCLUSIONS: The ADMIRE DIR method offers improved geometric performance with reasonable execution time so should be favoured for registering T2W and DWI images acquired during the same scan session in HNC patients. These results are important to ensure the appropriate selection of registration strategies for MR-guided radiotherapy.
Keywords
Humans, Radiotherapy Planning, Computer-Assisted, Head and Neck Neoplasms, Magnetic Resonance Imaging, Diffusion Magnetic Resonance Imaging, Radiotherapy Dosage, Image Processing, Computer-Assisted, Algorithms, deformable image registration, magnetic resonance, adaptive radiotherapy, quality assurance
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Health and Medical Physics Commons, Medical Sciences Commons, Oncology Commons
Comments
Supplementary Materials
PMID: 36519973