Faculty, Staff and Student Publications

Publication Date

2-28-2023

Journal

Genome Biology

Abstract

Bulk high-throughput omics data contain signals from a mixture of cell types. Recent developments of deconvolution methods facilitate cell type-specific inferences from bulk data. Our real data exploration suggests that differential expression or methylation status is often correlated among cell types. Based on this observation, we develop a novel statistical method named CeDAR to incorporate the cell type hierarchy in cell type-specific differential analyses of bulk data. Extensive simulation and real data analyses demonstrate that this approach significantly improves the accuracy and power in detecting cell type-specific differential signals compared with existing methods, especially in low-abundance cell types.

Keywords

Computer Simulation, Data Analysis, Protein Processing, Post-Translational, Cell type-specific differential analysis, Cell type hierarchy, Hierarchical Bayesian model, Microarray data analysis

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.