Faculty, Staff and Student Publications

Publication Date

1-17-2023

Journal

Entropy

Abstract

Although the performance of qubits has been improved in recent years, the differences in the microscopic atomic structure of the Josephson junctions, the core devices prepared under different preparation conditions, are still underexplored. In this paper, the effects of the oxygen temperature and upper aluminum deposition rate on the topology of the barrier layer in the aluminum-based Josephson junctions have been presented by classical molecular dynamics simulations. We apply a Voronoi tessellation method to characterize the topology of the interface and central regions of the barrier layers. We find that when the oxygen temperature is 573 K and the upper aluminum deposition rate is 4 Å/ps, the barrier has the fewest atomic voids and the most closely arranged atoms. However, if only the atomic arrangement of the central region is considered, the optimal rate of the aluminum deposition is 8 Å/ps. This work provides microscopic guidance for the experimental preparation of Josephson junctions, which helps to improve the performance of qubits and accelerate the practical application of quantum computers.

Keywords

Josephson junction, molecular dynamics, film growth, topological analysis

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.