
Faculty, Staff and Student Publications
Publication Date
10-1-2023
Journal
Physics and Imaging in Radiation Oncology
Abstract
BACKGROUND AND PURPOSE: Automatic review of breast plan quality for clinical trials is time-consuming and has some unique challenges due to the lack of target contours for some planning techniques. We propose using an auto-contouring model and statistical process control to independently assess planning consistency in retrospective data from a breast radiotherapy clinical trial.
MATERIALS AND METHODS: A deep learning auto-contouring model was created and tested quantitatively and qualitatively on 104 post-lumpectomy patients' computed tomography images (nnUNet; train/test: 80/20). The auto-contouring model was then applied to 127 patients enrolled in a clinical trial. Statistical process control was used to assess the consistency of the mean dose to auto-contours between plans and treatment modalities by setting control limits within three standard deviations of the data's mean. Two physicians reviewed plans outside the limits for possible planning inconsistencies.
RESULTS: Mean Dice similarity coefficients comparing manual and auto-contours was above 0.7 for breast clinical target volume, supraclavicular and internal mammary nodes. Two radiation oncologists scored 95% of contours as clinically acceptable. The mean dose in the clinical trial plans was more variable for lymph node auto-contours than for breast, with a narrower distribution for volumetric modulated arc therapy than for 3D conformal treatment, requiring distinct control limits. Five plans (5%) were flagged and reviewed by physicians: one required editing, two had clinically acceptable variations in planning, and two had poor auto-contouring.
CONCLUSIONS: An automated contouring model in a statistical process control framework was appropriate for assessing planning consistency in a breast radiotherapy clinical trial.
Keywords
Automated segmentation, Radiotherapy clinical trial, Breast cancer, Plan quality assurance
DOI
10.1016/j.phro.2023.100486
PMID
37712064
PMCID
PMC10498301
PubMedCentral® Posted Date
August 2023
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Medical Sciences Commons, Oncology Commons, Physics Commons, Radiation Medicine Commons
Comments
PMID: 37712064