Faculty, Staff and Student Publications

Publication Date

3-1-2023

Journal

Journal of Affective Disorders

Abstract

BACKGROUND: Artificial intelligence is currently being used to facilitate early disease detection, better understand disease progression, optimize medication/treatment dosages, and uncover promising novel treatments and potential outcomes.

METHODS: Utilizing the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) dataset, we built a machine learning model to predict depression remission rates using same clinical data as features for each of the first three antidepressant treatment steps in STAR*D. We only used early treatment data (baseline and first follow up) in each STAR*D step to temporally analyze predictive features of remission at the end of the step.

RESULTS: Our model showed significant prediction performance across the three treatment steps, At step 1, Model accuracy was 66 %; sensitivity-65 %, specificity-67 %, positive predictive value (PPV)-65.5 %, and negative predictive value (NPV)-66.6 %. At step 2, model accuracy was 71.3 %, sensitivity-74.3 %, specificity-69 %, PPV-64.5 %, and NPV-77.9 %. At step 3, accuracy reached 84.6 %; sensitivity-69 %, specificity-88.8 %, PPV-67 %, and NPV-91.1 %. Across all three steps, the early Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR) scores were key elements in predicting the final treatment outcome. The model also identified key sociodemographic factors that predicted treatment remission at different steps.

LIMITATIONS: The retrospective design, lack of replication in an independent dataset, and the use of "a complete case analysis" model in our analysis.

CONCLUSIONS: This proof-of-concept study showed that using early treatment data, multi-step temporal prediction of depressive symptom remission results in clinically useful accuracy rates. Whether these predictive models are generalizable deserves further study.

Keywords

Humans, Depressive Disorder, Major, Artificial Intelligence, Retrospective Studies, Antidepressive Agents, Treatment Outcome, Machine Learning, Citalopram

Comments

Associated Data

PMID: 36584711

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.