Faculty, Staff and Student Publications

Publication Date

1-1-2023

Journal

Advances in Radiation Oncology

Abstract

PURPOSE: Outside of randomized clinical trials, it is difficult to develop clinically relevant evidence-based recommendations for radiation therapy (RT) practice guidelines owing to lack of comprehensive real-world data. To address this knowledge gap, we formed the Learning from Analysis of Multicenter Big Data Aggregation consortium to cooperatively implement RT data standardization, develop software solutions for data analysis, and recommend clinical practice change based on real-world data analyzed. The first phase of this "Big Data" study aimed at characterizing variability in clinical practice patterns of dosimetric data for organs at risk (OARs) that would undermine subsequent use of large-scale, electronically aggregated data to characterize associations with outcomes. Evidence from this study was used as the basis for practical recommendations to improve data quality.

METHODS AND MATERIALS: Dosimetric details of patients with head and neck cancer treated with radiation therapy between 2014 and 2019 were analyzed. Institutional patterns of practice were characterized, including structure nomenclature, volumes, and frequency of contouring. Dose volume histogram (DVH) distributions were characterized and compared with institutional constraints and literature values.

RESULTS: Plans for 4664 patients treated to a mean plan dose of 64.4 ± 13.2 Gy in 32 ± 4 fractions were aggregated. Before implementation of TG-263 guidelines in each institution, there was variability in OAR nomenclature across institutions and structures. With evidence from this study, we identified a targeted and practical set of recommendations aimed at improving the quality of real-world data.

CONCLUSIONS: Quantifying similarities and differences among institutions for OAR structures and DVH metrics is the launching point for next steps to investigate potential relationships between DVH parameters and patient outcomes.

Comments

PMID: 36711064

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.