Publication Date

3-31-2023

Journal

Clinical Science

Abstract

Sepsis is a life-threatening organ dysfunction triggered by a dysregulated host immune response to eliminate an infection. After the host immune response is activated, a complex, dynamic, and time-dependent process is triggered. This process promotes the production of inflammatory mediators, including acute-phase proteins, complement system proteins, cytokines, chemokines, and antimicrobial peptides, which are required to initiate an inflammatory environment for eliminating the invading pathogen. The physiological response of this sepsis-induced systemic inflammation can affect blood-brain barrier (BBB) function; subsequently, endothelial cells produce inflammatory mediators, including cytokines, chemokines, and matrix metalloproteinases (MMPs) that degrade tight junction (TJ) proteins and decrease BBB function. The resulting BBB permeability allows peripheral immune cells from the bloodstream to enter the brain, which then release a range of inflammatory mediators and activate glial cells. The activated microglia and astrocytes release reactive oxygen species (ROS), cytokines, chemokines, and neurochemicals, initiate mitochondrial dysfunction and neuronal damage, and exacerbate the inflammatory milieu in the brain. These changes trigger sepsis-associated encephalopathy (SAE), which has the potential to increase cognitive deterioration and susceptibility to cognitive decline later in life.

Keywords

glial cell, neuroinflammation, sepsis, sepsis-associated encephalopathy, Immunology & Inflammation, Molecular Bases of Health & Disease, Neuroscience

Comments

PMID: 36942500

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.