
Faculty, Staff and Student Publications
Publication Date
11-28-2022
Journal
Journal of Clinical Medicine
Abstract
Crohn's disease (CD), is an inflammatory bowel disease that can affect any part of the gastro-intestinal tract (GI) and is associated with an increased risk of gastro-intestinal cancer. In the current study, we determined the role of genetic and small-molecule modulation of STAT3 in a mouse model of CD. STAT3 has 2 isoforms (α, β) which are expressed in most cells in a 4:1 ratio (α: β). STAT3α has pro-inflammatory and anti-apoptotic functions, while STAT3β has contrasting roles. We used an animal model of CD consisting of intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid and examined the severity of CD in transgenic-mice that express only STAT3α (∆β/∆β), as well as in wild-type (WT) mice administered TTI-101 (formerly C188-9), a small molecule STAT3 inhibitor. We determined that clinical manifestations of CD, such as mortality, rectal-bleeding, colonic bleeding, diarrhea, and colon shortening, were exacerbated in ∆β/∆β transgenic versus cage-control WT mice, while they were markedly decreased by TTI-101 treatment of WT mice. TTI-101 treatment also increased apoptosis of pathogenic CD4+ T cells and reduced colon levels of IL-17-positive cells. Our results indicate that STAT3 contributes to CD and that targeting of STAT3 with TTI-101 may be a useful approach to treating CD.
Keywords
STAT3, inflammatory bowel disease, Crohn’s disease
DOI
10.3390/jcm11237020
PMID
36498596
PMCID
PMC9736649
PubMedCentral® Posted Date
November 2022
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Digestive System Diseases Commons, Gastroenterology Commons, Medical Sciences Commons, Oncology Commons
Comments
Associated Data
PMID: 36498596