
Faculty, Staff and Student Publications
Publication Date
4-1-2023
Journal
Redox Biology
Abstract
OBJECTIVES: To determine the role of MYL4 regulation of lysosomal function and its disturbance in fibrotic atrial cardiomyopathy.
BACKGROUND: We have previously demonstrated that the atrial-specific essential light chain protein MYL4 is required for atrial contractile, electrical, and structural integrity. MYL4 mutation/dysfunction leads to atrial fibrosis, standstill, and dysrhythmia. However, the underlying pathogenic mechanisms remain unclear.
METHODS AND RESULTS: Rats subjected to knock-in of a pathogenic MYL4 mutant (p.E11K) developed fibrotic atrial cardiomyopathy. Proteome analysis and single-cell RNA sequencing indicate enrichment of autophagy pathways in mutant-MYL4 atrial dysfunction. Immunofluorescence and electron microscopy revealed undegraded autophagic vesicles accumulated in MYL4
CONCLUSIONS: MYL4 regulates autophagic flux in atrial cardiomyocytes via lysosomal mobility. MYL4 overexpression attenuates MYL4 p.E11K induced fibrotic atrial cardiomyopathy, while correcting autophagy and lysosomal function. These results provide a molecular basis for MYL4-mutant induced fibrotic atrial cardiomyopathy and identify a potential biological-therapy approach for the treatment of atrial fibrosis.
Keywords
Animals, Rats, Atrial Fibrillation, Autophagy, Cardiomyopathies, Fibrosis, Lysosomes, Myosin Light Chains, Myosins
DOI
10.1016/j.redox.2023.102606
PMID
36645977
PMCID
PMC9860351
PubMedCentral® Posted Date
January 2023
PubMedCentral® Full Text Version
Post-print
Published Open-Access
yes
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Medical Sciences Commons, Oncology Commons
Comments
Associated Data
PMID: 36645977