Faculty, Staff and Student Publications
Publication Date
11-1-2023
Journal
Biomaterials Advances
Abstract
Replacement therapy for the salivary gland (SG) remains an unmet clinical need. Xerostomia ("dry mouth") due to hyposalivation can result from injury or disease to the SG, such as salivary acinar death caused by radiation therapy (RT) for head and neck squamous cell carcinoma (HNSCC). Currently, only palliative treatments exist for xerostomia, and many patients endure deteriorated oral health and poor quality of life. Tissue engineering could offer a permanent solution for SG replacement by isolating healthy SG tissues prior to RT, expanding its cells in vitro, and recreating a functional salivary neogland for implantation post-RT. 3D bioprinting methods potentiate spatial cell deposition into defined hydrogel-based architectures, mimicking the thin epithelia developed during the complex branching morphogenesis of SG. By leveraging a microfluidics-based bioprinter with coaxial polymer and crosslinker streams, we fabricated thin, biocompatible, and reproducible hydrogel features that recapitulate the thin epithelia characteristics of SG. This flexible platform enabled two modes of printing: we produced solid hydrogel fibers, with diameters <100 >μm, that could be rastered to create larger mm-scale structures. By a second method, we generated hollow tubes with wall thicknesses ranging 45-80 μm, total tube diameters spanning 0.6-2.2 mm, and confirmed tube patency. In both cases, SG cells could be printed within the thin hydrogel features, with preserved phenotype and high viability, even at high density (5.0 × 10
Keywords
Humans, Tissue Engineering, Microfluidics, Bioprinting, Quality of Life, Hydrogels, Salivary Glands, Xerostomia
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Medical Sciences Commons, Oncology Commons
Comments
Associated Data
PMID: 37634337