Faculty, Staff and Student Publications

Publication Date

4-1-2024

Journal

Physics and Imaging in Radiation Oncology

Abstract

BACKGROUND AND PURPOSE: Application of different deformable dose accumulation (DDA) solutions makes institutional comparisons after online-adaptive magnetic resonance-guided radiotherapy (OA-MRgRT) challenging. The aim of this multi-institutional study was to analyze accuracy and agreement of DDA-implementations in OA-MRgRT.

MATERIAL AND METHODS: One gold standard (GS) case deformed with a biomechanical-model and five clinical cases consisting of prostate (2x), cervix, liver, and lymph node cancer, treated with OA-MRgRT, were analyzed. Six centers conducted DDA using institutional implementations. Deformable image registration (DIR) and DDA results were compared using the contour metrics Dice Similarity Coefficient (DSC), surface-DSC, Hausdorff-distance (HD95%), and accumulated dose-volume histograms (DVHs) analyzed via intraclass correlation coefficient (ICC) and clinical dosimetric criteria (CDC).

RESULTS: For the GS, median DDA errors ranged from 0.0 to 2.8 Gy across contours and implementations. DIR of clinical cases resulted in DSC > 0.8 for up to 81.3% of contours and a variability of surface-DSC values depending on the implementation. Maximum HD95%=73.3 mm was found for duodenum in the liver case. Although DVH ICC > 0.90 was found after DDA for all but two contours, relevant absolute CDC differences were observed in clinical cases: Prostate I/II showed maximum differences in bladder V28Gy (10.2/7.6%), while for cervix, liver, and lymph node the highest differences were found for rectum D2cm

CONCLUSION: Overall, high agreement was found between the different DIR and DDA implementations. Case- and algorithm-dependent differences were observed, leading to potentially clinically relevant results. Larger studies are needed to define future DDA-guidelines.

Keywords

Deformable dose accumulation (DDA), Deformable image registration (DIR), Multi-institutional analysis, Online MR-guided radiotherapy (MRgRT)

Comments

Associated Data

PMID: 38883145

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.