Faculty, Staff and Student Publications

Publication Date

10-13-2022

Journal

Cancers

Abstract

Recently, convolutional neural network (CNN) models have been proposed to automate the assessment of breast density, breast cancer detection or risk stratification using single image modality. However, analysis of breast density using multiple mammographic types using clinical data has not been reported in the literature. In this study, we investigate pre-trained EfficientNetB0 deep learning (DL) models for automated assessment of breast density using multiple mammographic types with and without clinical information to improve reliability and versatility of reporting. 120,000 for-processing and for-presentation full-field digital mammograms (FFDM), digital breast tomosynthesis (DBT), and synthesized 2D images from 5032 women were retrospectively analyzed. Each participant underwent up to 3 screening examinations and completed a questionnaire at each screening encounter. Pre-trained EfficientNetB0 DL models with or without clinical history were optimized. The DL models were evaluated using BI-RADS (fatty, scattered fibroglandular densities, heterogeneously dense, or extremely dense) versus binary (non-dense or dense) density classification. Pre-trained EfficientNetB0 model performances were compared using inter-observer and commercial software (Volpara) variabilities. Results show that the average Fleiss' Kappa score between-observers ranged from 0.31-0.50 and 0.55-0.69 for the BI-RADS and binary classifications, respectively, showing higher uncertainty among experts. Volpara-observer agreement was 0.33 and 0.54 for BI-RADS and binary classifications, respectively, showing fair to moderate agreement. However, our proposed pre-trained EfficientNetB0 DL models-observer agreement was 0.61-0.66 and 0.70-0.75 for BI-RADS and binary classifications, respectively, showing moderate to substantial agreement. Overall results show that the best breast density estimation was achieved using for-presentation FFDM and DBT images without added clinical information. Pre-trained EfficientNetB0 model can automatically assess breast density from any images modality type, with the best results obtained from for-presentation FFDM and DBT, which are the most common image archived in clinical practice.

Keywords

full-field digital mammograms (FFDM), digital breast tomosynthesis (DBT), deep learning (DL), synthesized 2D images

DOI

10.3390/cancers14205003

PMID

36291787

PMCID

PMC9599904

PubMedCentral® Posted Date

10-13-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.