Faculty, Staff and Student Publications

Publication Date

4-1-2022

Journal

Journal of Applied Clinical Medical Physics

DOI

10.1002/acm2.13557

PMID

35148034

PMCID

PMC8992954

PubMedCentral® Posted Date

2-11-2022

PubMedCentral® Full Text Version

Post-print

Abstract

Purpose: Complex data processing and curation for artificial intelligence applications rely on high-quality data sets for training and analysis. Manually reviewing images and their associated annotations is a very laborious task and existing quality control tools for data review are generally limited to raw images only. The purpose of this work was to develop an imaging informatics dashboard for the easy and fast review of processed magnetic resonance (MR) imaging data sets; we demonstrated its ability in a large-scale data review.

Methods: We developed a custom R Shiny dashboard that displays key static snapshots of each imaging study and its annotations. A graphical interface allows the structured entry of review data and download of tabulated review results. We evaluated the dashboard using two large data sets: 1380 processed MR imaging studies from our institution and 285 studies from the 2018 MICCAI Brain Tumor Segmentation Challenge (BraTS).

Results: Studies were reviewed at an average rate of 100/h using the dashboard, 10 times faster than using existing data viewers. For data from our institution, 1181 of the 1380 (86%) studies were of acceptable quality. The most commonly identified failure modes were tumor segmentation (9.6% of cases) and image registration (4.6% of cases). Tumor segmentation without visible errors on the dashboard had much better agreement with reference tumor volume measurements (root-mean-square error 12.2 cm3 ) than did segmentations with minor errors (20.5 cm3 ) or failed segmentations (27.4 cm3 ). In the BraTS data, 242 of 285 (85%) studies were acceptable quality after processing. Among the 43 cases that failed review, 14 had unacceptable raw image quality.

Conclusion: Our dashboard provides a fast, effective tool for reviewing complex processed MR imaging data sets. It is freely available for download at https://github.com/EGates1/MRDQED.

Keywords

Artificial Intelligence, Brain Neoplasms, Data Accuracy, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, dashboard, data curation, imaging informatics, MRI

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.