Faculty, Staff and Student Publications

Publication Date

9-1-2022

Journal

Clinical and Translational Radiation Oncology

DOI

10.1016/j.ctro.2022.06.007

PMID

35782963

PMCID

PMC9240370

PubMedCentral® Posted Date

6-18-2022

PubMedCentral® Full Text Version

Post-print

Abstract

PURPOSE: Segmentation of involved lymph nodes on head and neck computed tomography (HN-CT) scans is necessary for the radiotherapy planning of early-stage human papilloma virus (HPV) associated oropharynx cancers (OPC). We aimed to train a deep learning convolutional neural network (DL-CNN) to segment involved lymph nodes on HN-CT scans.

METHODS: Ground-truth segmentation of involved nodes was performed on pre-surgical HN-CT scans for 90 patients who underwent levels II-IV neck dissection for node-positive HPV-OPC (training/validation [n = 70] and testing [n = 20]). A 5-fold cross validation approach was used to train 5 DL-CNN sub-models based on a residual U-net architecture. Validation and testing segmentation masks were compared to ground-truth masks using predetermined metrics. A lymph auto-detection model to discriminate between "node-positive" and "node-negative" HN-CT scans was developed by thresholding segmentation model outputs and evaluated using the area under the receiver operating characteristic curve (AUC).

RESULTS: In the DL-CNN validation phase, all sub-models yielded segmentation masks with median Dice ≥ 0.90 and median volume similarity score of ≥ 0.95. In the testing phase, the DL-CNN produced consensus segmentation masks with median Dice of 0.92 (IQR, 0.89-0.95), median volume similarity of 0.97 (IQR, 0.94-0.99), and median Hausdorff distance of 4.52 mm (IQR, 1.22-8.38). The detection model achieved an AUC of 0.98.

CONCLUSION: The results from this single-institution study demonstrate the successful automation of lymph node segmentation for patients with HPV-OPC using a DL-CNN. Future studies, including validation with an external dataset, are necessary to clarify its role in the larger radiation oncology treatment planning workflow.

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.