Faculty, Staff and Student Publications

Publication Date

6-4-2025

Journal

Scientific Reports

DOI

10.1038/s41598-025-03900-0

PMCID

PMC12137812

PubMedCentral® Posted Date

6-4-2025

PubMedCentral® Full Text Version

Post-print

Abstract

Recent research advances have resulted in an experimental benchtop X-ray fluorescence computed tomography (XFCT) system that likely meets the imaging dose/scan time constraints for benchtop XFCT imaging of live mice injected with gold nanoparticles (GNPs). For routine in vivo benchtop XFCT imaging, however, additional challenges, most notably the need for rapid/near-real-time handling of X-ray fluorescence (XRF) signal extraction and XFCT image reconstruction, must be successfully addressed. Here we propose a novel end-to-end deep learning (DL) framework that integrates a one-dimensional convolutional neural network (1D CNN) for rapid XRF signal extraction with a U-Net model for XFCT image reconstruction. We trained the models using a comprehensive dataset including experimentally-acquired and augmented XRF/scatter photon spectra from various GNP concentrations and imaging scenarios, including phantom and synthetic mouse models. The DL framework demonstrated exceptional performance in both tasks. The 1D CNN achieved a high coefficient-of-determination (R² > 0.9885) and a low mean-absolute-error (MAE <  0.6248) in XRF signal extraction. The U-Net model achieved an average structural-similarity-index-measure (SSIM) of 0.9791 and a peak signal-to-noise ratio (PSNR) of 39.11 in XFCT image reconstruction, closely matching ground truth images. Notably, the DL approach (vs. the conventional approach) reduced the total post-processing time per slice from approximately 6 min to just 1.25 s.

Keywords

Deep Learning, Animals, Mice, Image Processing, Computer-Assisted, Tomography, X-Ray Computed, Metal Nanoparticles, Gold, Phantoms, Imaging, Neural Networks, Computer

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.