Faculty, Staff and Student Publications

Publication Date

9-9-2024

Journal

Cancer Cell

DOI

10.1016/j.ccell.2024.08.012

PMID

39255775

Abstract

Glioblastoma recurrence is currently inevitable despite extensive standard-of-care treatment. In preclinical studies, an alternative strategy of targeting tumor-associated macrophages and microglia through CSF-1R inhibition was previously found to regress established tumors and significantly increase overall survival. However, recurrences developed in ∼50% of mice in long-term studies, which were consistently associated with fibrotic scars. This fibrotic response is observed following multiple anti-glioma therapies in different preclinical models herein and in patient recurrence samples. Multi-omics analyses of the post-treatment tumor microenvironment identified fibrotic areas as pro-tumor survival niches that encapsulated surviving glioma cells, promoted dormancy, and inhibited immune surveillance. The fibrotic treatment response was mediated by perivascular-derived fibroblast-like cells via activation by transforming growth factor β (TGF-β) signaling and neuroinflammation. Concordantly, combinatorial inhibition of these pathways inhibited treatment-associated fibrosis, and significantly improved survival in preclinical trials of anti-colony-stimulating factor-1 receptor (CSF-1R) therapy.

Keywords

Glioblastoma, Animals, Humans, Mice, Neoplasm Recurrence, Local, Tumor Microenvironment, Fibrosis, Brain Neoplasms, Receptor, Macrophage Colony-Stimulating Factor, Cell Line, Tumor, Signal Transduction, Xenograft Model Antitumor Assays, Transforming Growth Factor beta

Published Open-Access

yes

fx1.jpg (60 kB)
Graphical Abstract

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.