Faculty, Staff and Student Publications
Publication Date
9-1-2025
Journal
Advances in Radiation Oncology
DOI
10.1016/j.adro.2025.101845
PMID
40808698
PMCID
PMC12344783
PubMedCentral® Posted Date
7-4-2025
PubMedCentral® Full Text Version
Post-print
Abstract
Purpose: Accurate cardiac chamber segmentation is crucial for improving cardiac sparing in magnetic resonance (MR)-guided adaptive radiation therapy, especially in patients at risk for radiation-induced cardiotoxicity. Here, we developed and evaluated automatic segmentation models for cardiac chambers that use daily MR images acquired on a 1.5-T MR-Linac system.
Methods and materials: Twenty healthy volunteers underwent daily MR scanning on a 1.5-T MR-Linac, with 2 radial sequences: T2/T1 3DVaneXD balanced fast field echo with spectral attenuated inversion recovery (bFFE-SPAIR) and T1 3DVaneXD mDixon. Three flip angles were tested for each sequence to determine optimal image quality for chamber segmentation. Full-resolution 3D nnU-Net models were trained for the following: (1) bFFE-SPAIR (bFFE model); (2) T1 mDixon (mDixon model); and (3) both sequences (hybrid model). Models were evaluated based on Dice similarity coefficient (DSC) and mean surface distance against manual contours. Clinical acceptance of the automatic segmentation was assessed with a 5-point Likert scale. An in-silico planning study was performed to assess cardiac chamber sparing during plan adaptation.
Results: The average contrast-to-noise ratios in bFFE-SPAIR were 8.7 (20°), 34.2 (50°), and 37.3 (80°); for T1 mDixon, these values were 3.6 (5°), 5.9 (10°), and 4.9 (20°). The bFFE model achieved the highest segmentation performance (average DSC 0.85 ± 0.05 and mean surface distance 2.2 ± 0.6 mm). The T1 mDixon sequence, despite lower contrast-to-noise ratios, provided similar segmentation accuracy (DSC 0.83 ± 0.06). A hybrid model combining both sequences showed no significant improvement over the bFFE model. Clinical evaluation indicated that 95% of the autosegmented contours from the bFFE model were acceptable for clinical use (score ≥4). Adaptive plan greatly reduced individual cardiac chamber dose while maintaining similar target coverage.
Conclusions: This study demonstrated the feasibility of using bFFE-SPAIR and T1 mDixon sequences to accurately segment cardiac chambers on a 1.5-T MR-Linac. These models offer potential for improved cardiac sparing in MR-guided adaptive radiation therapy.
Published Open-Access
yes
Recommended Citation
Chen, Xinru; Ding, Yao; Weng, Julius; et al., "Deep Learning-Based Cardiac Chamber Segmentation in Magnetic Resonance-Guided Adaptive Radiation Therapy" (2025). Faculty, Staff and Student Publications. 4905.
https://digitalcommons.library.tmc.edu/uthgsbs_docs/4905
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Genetic Phenomena Commons, Medical Genetics Commons, Oncology Commons