Faculty, Staff and Student Publications

Publication Date

7-24-2025

Journal

Journal of Computer Assisted Tomography

DOI

10.1097/RCT.0000000000001782

PMID

40705461

PMCID

PMC12404250

PubMedCentral® Posted Date

9-3-2025

PubMedCentral® Full Text Version

Author MSS

Abstract

Objective: To compare the predictive value of minimal ablative margin (MAM) quantification using tumor segmentation on intraprocedural contrast-enhanced hepatic arterial (HAP) versus portal venous phase (PVP) CT on local outcomes following percutaneous thermal ablation of colorectal liver metastases (CRLM).

Methods: This dual-center retrospective study included patients undergoing thermal ablation of CRLM with intraprocedural preablation and postablation contrast-enhanced CT imaging between 2009 and 2021. Tumors were segmented in both HAP and PVP CT phases using an artificial intelligence-based auto-segmentation model and reviewed by a trained radiologist. The MAM was quantified using a biomechanical deformable image registration process. The area under the receiver operating characteristic curve (AUROC) was used to compare the prognostic value for predicting local tumor progression (LTP).

Results: Among 81 patients (60 y±13, 53 men), 151 CRLMs were included. During 29.4 months of median follow-up, LTP was noted in 24/151 (15.9%). Median tumor volumes on HAP and PVP CT were 1.7 mL and 1.2 mL, respectively, with respective median MAMs of 2.3 and 4.0 mm (both P< 0.001). The AUROC for 1-year LTP prediction was 0.78 (95% CI: 0.70-0.85) on HAP and 0.84 (95% CI: 0.78-0.91) on PVP (P= 0.002).

Conclusions: During CT-guided percutaneous thermal ablation, MAM measured based on tumors segmented on PVP images conferred a higher predictive accuracy of ablation outcomes among CRLM patients than those segmented on HAP images, supporting the use of PVP rather than HAP images for segmentation during ablation of CRLMs.

Keywords

Ablation techniques, Colorectal neoplasms, Computed tomography, Image processing, Liver

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.