Faculty, Staff and Student Publications

Publication Date

5-1-2024

Journal

Journal of Thoracic Oncology

DOI

10.1016/j.jtho.2023.12.010

PMID

38070597

Abstract

Introduction: Pathologic response (PathR) by histopathologic assessment of resected specimens may be an early clinical end point associated with long-term outcomes with neoadjuvant therapy. Digital pathology may improve the efficiency and precision of PathR assessment. LCMC3 (NCT02927301) evaluated neoadjuvant atezolizumab in patients with resectable NSCLC and reported a 20% major PathR rate.

Methods: We determined PathR in primary tumor resection specimens using guidelines-based visual techniques and developed a convolutional neural network model using the same criteria to digitally measure the percent viable tumor on whole-slide images. Concordance was evaluated between visual determination of percent viable tumor (n = 151) performed by one of the 47 local pathologists and three central pathologists.

Results: For concordance among visual determination of percent viable tumor, the interclass correlation coefficient was 0.87 (95% confidence interval [CI]: 0.84-0.90). Agreement for visually assessed 10% or less viable tumor (major PathR [MPR]) in the primary tumor was 92.1% (Fleiss kappa = 0.83). Digitally assessed percent viable tumor (n = 136) correlated with visual assessment (Pearson r = 0.73; digital/visual slope = 0.28). Digitally assessed MPR predicted visually assessed MPR with outstanding discrimination (area under receiver operating characteristic curve, 0.98) and was associated with longer disease-free survival (hazard ratio [HR] = 0.30; 95% CI: 0.09-0.97, p = 0.033) and overall survival (HR = 0.14, 95% CI: 0.02-1.06, p = 0.027) versus no MPR. Digitally assessed PathR strongly correlated with visual measurements.

Conclusions: Artificial intelligence-powered digital pathology exhibits promise in assisting pathologic assessments in neoadjuvant NSCLC clinical trials. The development of artificial intelligence-powered approaches in clinical settings may aid pathologists in clinical operations, including routine PathR assessments, and subsequently support improved patient care and long-term outcomes.

Keywords

Humans, Carcinoma, Non-Small-Cell Lung, Lung Neoplasms, Artificial Intelligence, Neoadjuvant Therapy, Antibodies, Monoclonal, Humanized, Male, Female, Middle Aged, Aged, Artificial intelligence, Convolutional neural network, Digital pathology, NSCLC, Neoadjuvant

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.