Faculty, Staff and Student Publications

Publication Date

1-1-2023

Journal

Pacific Symposium Biocomputing 2023

Abstract

Deep learning methods for image segmentation and contouring are gaining prominence as an automated approach for delineating anatomical structures in medical images during radiation treatment planning. These contours are used to guide radiotherapy treatment planning, so it is important that contouring errors are flagged before they are used for planning. This creates a need for effective quality assurance methods to enable the clinical use of automated contours in radiotherapy. We propose a novel method for contour quality assurance that requires only shape features, making it independent of the platform used to obtain the images. Our method uses a random forest classifier to identify low-quality contours. On a dataset of 312 kidney contours, our method achieved a cross-validated area under the curve of 0.937 in identifying unacceptable contours. We applied our method to an unlabeled validation dataset of 36 kidney contours. We flagged 6 contours which were then reviewed by a cervix contour specialist, who found that 4 of the 6 contours contained errors. We used Shapley values to characterize the specific shape features that contributed to each contour being flagged, providing a starting point for characterizing the source of the contouring error. These promising results suggest our method is feasible for quality assurance of automated radiotherapy contours.

Keywords

Shape statistics, Contour quality assurance, Medical imaging, Random forest

Comments

PMID: 36540994

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.