Faculty, Staff and Student Publications

Language

English

Publication Date

2-11-2026

Journal

Communications Biology

DOI

10.1038/s42003-026-09653-4

PMID

41673469

Abstract

Adoptive cell therapies (ACT) leverage tumor-immune interactions to cure cancer. Despite promising phase I/II clinical trials of chimeric-antigen-receptor natural killer (CAR-NK) cell therapies, molecular mechanisms and cellular properties required to achieve clinical benefits in broad cancer spectra remain underexplored. While in vitro and in vivo experiments are essential, they are expensive, laborious, and limited to targeted investigations. Here, we present ABMACT (Agent-Based Model for Adoptive Cell Therapy), an in silico approach employing agent-based models (ABM) to simulate the continuous course and dynamics of an evolving tumor-immune ecosystem, consisting of heterogeneous "virtual cells" created based on knowledge and omics data observed in experiments and patients. Applying ABMACT in multiple therapeutic contexts indicates that to achieve optimal ACT efficacy, it is key to enhance immune cellular proliferation, cytotoxicity, and serial killing capacity. With ABMACT, in silico trials can be performed systematically to inform ACT product development and predict optimal treatment strategies.

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.