Faculty, Staff and Student Publications
Publication Date
3-6-2024
Journal
Cancer Research Communications
Abstract
UNLABELLED: Acute myeloid leukemia (AML) is a heterogeneous malignancy of the blood primarily treated with intensive chemotherapy. The allogeneic T-cell antileukemic activity via donor lymphocyte infusions and stem cell transplantation suggests a potential role for checkpoint blockade therapy in AML. While clinical trials employing these treatments have fallen short of expected results, a deeper exploration into the functional states of T cells in AML could bridge this knowledge gap. In this study, we analyzed the polyfunctional activity of T cells in a cohort of patients with relapsed/refractory (RelRef) AML treated on the clinical trial (ClinicalTrials.gov identifier: NCT02397720) of combination therapy using azacitidine and nivolumab (Aza/Nivo). We utilized the single-cell polyfunctional multiplexed immune assay IsoPlexis to evaluate the CD4 and CD8 T cells in peripheral blood and bone marrow samples collected before and after immunotherapy. This revealed at a pseudobulk level that the CD4 T cells exhibited higher functional activity post-immunotherapy (post-IO), suggesting that CD4-directed therapies may play a role in RelRef AML. Additional single-cell analysis revealed significant differences in baseline polyfunctionality in bone marrows of responders as compared with nonresponders for both CD4 and CD8 T cells. Overall, this study highlights the impact of polyfunctional assessment in understanding CD4 and CD8 dynamics in contexts of therapy in AML.
SIGNIFICANCE: We found T-cell polyfunctionality differs between local and systemic microenvironments. Enhanced variability in proteomic profiles of bone marrow CD4 T cells post-IO suggests their pivotal role in AML treatment response. Single-cell analysis identified novel CD4 and CD8 T-cell functional groups linked to immunotherapy response within the bone marrow.
Keywords
Humans, Immune Checkpoint Inhibitors, Proteomics, Secretome, Leukemia, Myeloid, Acute, CD8-Positive T-Lymphocytes, Tumor Microenvironment
Included in
Bioinformatics Commons, Biomedical Informatics Commons, Medical Sciences Commons, Oncology Commons
Comments
Supplementary Materials
PMID: 38391202