Student and Faculty Publications

Publication Date

11-17-2023

Journal

Journal of the American Medical Informatics Association

Abstract

Despite recent methodology advancements in clinical natural language processing (NLP), the adoption of clinical NLP models within the translational research community remains hindered by process heterogeneity and human factor variations. Concurrently, these factors also dramatically increase the difficulty in developing NLP models in multi-site settings, which is necessary for algorithm robustness and generalizability. Here, we reported on our experience developing an NLP solution for Coronavirus Disease 2019 (COVID-19) signs and symptom extraction in an open NLP framework from a subset of sites participating in the National COVID Cohort (N3C). We then empirically highlight the benefits of multi-site data for both symbolic and statistical methods, as well as highlight the need for federated annotation and evaluation to resolve several pitfalls encountered in the course of these efforts.

Keywords

Humans, Natural Language Processing, Electronic Health Records, COVID-19, Algorithms

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.