Faculty, Staff and Student Publications

Publication Date

1-1-2024

Journal

Digital Health

Abstract

BACKGROUND: Risky health behaviors place an enormous toll on public health systems. While relapse prevention support is integrated with most behavior modification programs, the results are suboptimal. Recent advances in artificial intelligence (AI) applications provide us with unique opportunities to develop just-in-time adaptive behavior change solutions.

METHODS: In this study, we present an innovative framework, grounded in behavioral theory, and enhanced with social media sequencing and communications scenario builder to architect a conversational agent (CA) specialized in the prevention of relapses in the context of tobacco cessation. We modeled peer interaction data (n = 1000) using the taxonomy of behavior change techniques (BCTs) and speech act (SA) theory to uncover the socio-behavioral and linguistic context embedded within the online social discourse. Further, we uncovered the sequential patterns of BCTs and SAs from social conversations (n = 339,067). We utilized grounded theory-based techniques for extracting the scenarios that best describe individuals' needs and mapped them into the architecture of the virtual CA.

RESULTS: The frequently occurring sequential patterns for BCTs were

CONCLUSIONS: AI-led virtual CAs focusing on behavior change need to employ data-driven and theory-linked approaches to address issues related to engagement, sustainability, and acceptance. The sequential patterns of theory and intent manifestations need to be considered when developing effective behavior change CAs.

Keywords

Smoking cessation, online health communities, virtual conversational agents, behavior change techniques, speech acts, health promotion

Comments

PMID: 38357587

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.