Faculty, Staff and Student Publications
Publication Date
1-1-2024
Journal
Digital Health
Abstract
BACKGROUND: Risky health behaviors place an enormous toll on public health systems. While relapse prevention support is integrated with most behavior modification programs, the results are suboptimal. Recent advances in artificial intelligence (AI) applications provide us with unique opportunities to develop just-in-time adaptive behavior change solutions.
METHODS: In this study, we present an innovative framework, grounded in behavioral theory, and enhanced with social media sequencing and communications scenario builder to architect a conversational agent (CA) specialized in the prevention of relapses in the context of tobacco cessation. We modeled peer interaction data (n = 1000) using the taxonomy of behavior change techniques (BCTs) and speech act (SA) theory to uncover the socio-behavioral and linguistic context embedded within the online social discourse. Further, we uncovered the sequential patterns of BCTs and SAs from social conversations (n = 339,067). We utilized grounded theory-based techniques for extracting the scenarios that best describe individuals' needs and mapped them into the architecture of the virtual CA.
RESULTS: The frequently occurring sequential patterns for BCTs were
CONCLUSIONS: AI-led virtual CAs focusing on behavior change need to employ data-driven and theory-linked approaches to address issues related to engagement, sustainability, and acceptance. The sequential patterns of theory and intent manifestations need to be considered when developing effective behavior change CAs.
Keywords
Smoking cessation, online health communities, virtual conversational agents, behavior change techniques, speech acts, health promotion
Comments
PMID: 38357587