Faculty, Staff and Student Publications
Publication Date
8-1-2024
Journal
Journal of the American Medical Informatics Association
Abstract
OBJECTIVE: To use workflow execution models to highlight new considerations for patient-centered clinical decision support policies (PC CDS), processes, procedures, technology, and expertise required to support new workflows.
METHODS: To generate and refine models, we used (1) targeted literature reviews; (2) key informant interviews with 6 external PC CDS experts; (3) model refinement based on authors' experience; and (4) validation of the models by a 26-member steering committee.
RESULTS AND DISCUSSION: We identified 7 major issues that provide significant challenges and opportunities for healthcare systems, researchers, administrators, and health IT and app developers. Overcoming these challenges presents opportunities for new or modified policies, processes, procedures, technology, and expertise to: (1) Ensure patient-generated health data (PGHD), including patient-reported outcomes (PROs), are documented, reviewed, and managed by appropriately trained clinicians, between visits and after regular working hours. (2) Educate patients to use connected medical devices and handle technical issues. (3) Facilitate collection and incorporation of PGHD, PROs, patient preferences, and social determinants of health into existing electronic health records. (4) Troubleshoot erroneous data received from devices. (5) Develop dashboards to display longitudinal patient-reported data. (6) Provide reimbursement to support new models of care. (7) Support patient engagement with remote devices.
CONCLUSION: Several new policies, processes, technologies, and expertise are required to ensure safe and effective implementation and use of PC CDS. As we gain more experience implementing and working with PC CDS, we should be able to begin realizing the long-term positive impact on patient health that the patient-centered movement in healthcare promises.
Keywords
decision support systems, clinical, workflow, patient-reported outcome measures, patient-generated health data
Comments
PMID: 38907738