Journal Articles

Publication Date

1-1-2022

Journal

Frontiers in Chemistry

Abstract

The Co3O4 nanoparticle-modified indium tin oxide-coated glass slide (ITO) electrodes are successfully prepared using dicarboxylic acid as the self-assembled monolayer through a surface esterification reaction. The ITO-SAM-Co3O4 (SAM = dicarboxylic acid) are active to electrochemically catalyze oxygen evolution reaction (OER) in acid. The most active assembly, with Co loading at 3.31 × 10-8 mol cm-2, exhibits 374 mV onset overpotential and 497 mV overpotential to reach 1 mA cm-2 OER current in 0.1 M HClO4. The electron transfer rate constant (k) is acquired using Laviron's approach, and the results show that k is not affected by the carbon chain lengths of the SAM (up to 18 -CH2 groups) and that an increase in the average diameter of Co3O4 nanoparticles enhances the k. In addition, shorter carbon chains and smaller Co3O4 nanoparticles can increase the turn-over frequency (TOF) of Co sites toward OER. The Co3O4 nanoparticles tethered to the ITO surface show both a higher number of electrochemically active Co sites and a higher TOF of OER than the Co3O4 nanoparticles bound to ITO using Nafion.

Keywords

dicarboxylic acid, spinel cobalt oxide nanoparticles, oxygen evolution reaction, electron transfer kinetics, indium tin oxide

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.