Student and Faculty Publications
Publication Date
12-10-2022
Journal
Materials
Abstract
The irredeemable magnetic losses of Sm(Co, Fe, Zr, Cu)7.8 permanent magnets caused by oxidation are very important for their practical application. In this work, the simulated results with R2 ≥ 98% based on the data of the temperature cycling test and the long-term isothermal test for the original samples confirmed that the magnetic flux losses reached 9.38% after the 5000th cycle in range R.T.–300 °C, and 7.15% after oxidated at 180 °C for 10 years, respectively. Demagnetization curves showed that the low-temperature oxidation mainly led to the remanence attenuation, while the coercivity remained relatively stable. SEM observation and EDS analysis revealed that an oxide outer layer with a thickness of 1.96 μm was formed on the surface of the original sample at 180 °C for 180 days, in which there was no enrichment or precipitation of metal elements. However, once a Cu, O-rich outer layer with a thickness of 0.72 μm was grown by using a temperature cycling from −50–250 °C for three cycles, the attenuation of magnetic properties could be inhibited under the low-temperature oxidation. This work suggested that the magnetic attenuation of Sm2Co17-type permanent magnets in the low-temperature field could not be ignored, and provided a simple method to suppress this attenuation of magnetic properties below 300 °C.
Keywords
SmCo, thermal stability, magnet, temperature cycling
Comments
Supplementary Materials
PMID: 36556635