Faculty, Staff and Student Publications

Publication Date

10-1-2022

Journal

Genomics, Proteomics & Bioinformatics

Abstract

Identification of B-cell epitopes (BCEs) plays an essential role in the development of peptide vaccines and immuno-diagnostic reagents, as well as antibody design and production. In this work, we generated a large benchmark dataset comprising 124,879 experimentally supported linear epitope-containing regions in 3567 protein clusters from over 1.3 million B cell assays. Analysis of this curated dataset showed large pathogen diversity covering 176 different families. The accuracy in linear BCE prediction was found to strongly vary with different features, while all sequence-derived and structural features were informative. To search more efficient and interpretive feature representations, a ten-layer deep learning framework for linear BCE prediction, namely NetBCE, was developed. NetBCE achieved high accuracy and robust performance with the average area under the curve (AUC) value of 0.8455 in five-fold cross-validation through automatically learning the informative classification features. NetBCE substantially outperformed the conventional machine learning algorithms and other tools, with more than 22.06% improvement of AUC value compared to other tools using an independent dataset. Through investigating the output of important network modules in NetBCE, epitopes and non-epitopes tended to be presented in distinct regions with efficient feature representation along the network layer hierarchy. The NetBCE is freely available at https://github.com/bsml320/NetBCE.

Keywords

Humans, Epitopes, B-Lymphocyte, Neural Networks, Computer, Algorithms, B-cell epitope, Immunotherapy, Deep learning, Machine learning, Vaccine development

DOI

10.1016/j.gpb.2022.11.009

PMID

36526218

PMCID

PMC10025766

PubMedCentral® Posted Date

12-13-2022

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.