Faculty, Staff and Student Publications

Publication Date

1-1-2022

Journal

AMIA Summits on Translational Science Proceedings

Abstract

We introduce a new logic, called Temporal Cohort Logic (TCL), for cohort specification and discovery in clinical and population health research. TCL is created to fill a conceptual gap in formalizing temporal reasoning in biomedicine, in a similar role that temporal logics play for computer science and its applications. We provide formal syntax and semantics for TCL and illustrate the various logical constructs using examples related to human health. Relationships and distinctions with existing temporal logical frameworks are discussed. Applications in electronic health record (EHR) and in neurophysiological data resource are provided. Our approach differs from existing temporal logics, in that we explicitly capture Allen's interval algebra as modal operators in a language of temporal logic (rather than addressing it in the semantic structure). This has two major implications. First, it provides a formal logical framework for reasoning about time in biomedicine, allowing general (i.e., higher-levels of abstraction) investigation into the properties of this approach (such as proof systems, completeness, expressiveness, and decidability) independent of a specific query language or a database system. Second, it puts our approach in the context of logical developments in computer science, allowing potential translation of existing results into the setting of TCL and its variants or subsystems so as to illuminate opportunities and computational challenges involved in temporal reasoning for biomedicine.

Keywords

Humans, Electronic Health Records, Logic, Medicine, Reproducibility of Results, Semantics, User-Computer Interface, COVID-19, Datasets as Topic, Electroencephalography, Cohort Studies, Time Factors

PMID

37128360

PMCID

PMC10148298

PubMedCentral® Posted Date

4-29-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.