Faculty, Staff and Student Publications

Publication Date

5-1-2023

Journal

Heliyon

Abstract

The plasmonic antenna probe is constructed using a silver rod embedded in a modified Mach-Zehnder interferometer (MZI) ad-drop filter. Rabi antennas are formed when space-time control reaches two levels of system oscillation and can be used as human brain sensor probes. Photonic neural networks are designed using brain-Rabi antenna communication, and transmissions are connected via neurons. Communication signals are carried by electron spin (up and down) and adjustable Rabi frequency. Hidden variables and deep brain signals can be obtained by external detection. A Rabi antenna has been developed by simulation using computer simulation technology (CST) software. Additionally, a communication device has been developed that uses the Optiwave program with Finite-Difference Time-Domain (OptiFDTD). The output signal is plotted using the MATLAB program with the parameters of the OptiFDTD simulation results. The proposed antenna oscillates in the frequency range of 192 THz to 202 THz with a maximum gain of 22.4 dBi. The sensitivity of the sensor is calculated along with the result of electron spin and applied to form a human brain connection. Moreover, intelligent machine learning algorithms are proposed to identify high-quality transmissions and predict the behavior of transmissions in the near future. During the process, a root mean square error (RMSE) of 2.3332(±0.2338)" role="presentation" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; font-size-adjust: none; overflow-wrap: normal; text-wrap-mode: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgb(33, 33, 33); font-family: BlinkMacSystemFont, -apple-system, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Fira Sans", "Droid Sans", "Helvetica Neue", sans-serif; position: relative;">2.3332(±0.2338)2.3332(±0.2338) was obtained. Finally, it can be said that our proposed model can efficiently predict human mind, thoughts, behavior as well as action/reaction, which can be greatly helpful in the diagnosis of various neuro-degenerative/psychological diseases (such as Alzheimer's, dementia, etc.) and for security purposes.

Keywords

Brain neural network, Deep brain sensors, Brain-Rabi antenna, Deep learning, Biosensors on human brain/action, Simulation, Sensitivity

DOI

10.1016/j.heliyon.2023.e15749

PMID

37305516

PMCID

PMC10256856

PubMedCentral® Posted Date

4-25-2023

PubMedCentral® Full Text Version

Post-print

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.