Faculty, Staff and Student Publications

Language

English

Publication Date

9-1-2024

Journal

Journal of the American Medical Informatics Association

DOI

10.1093/jamia/ocae129

PMID

38857454

PMCID

PMC11339508

PubMedCentral® Posted Date

6-10-2024

PubMedCentral® Full Text Version

Post-print

Abstract

Objectives: Precise literature recommendation and summarization are crucial for biomedical professionals. While the latest iteration of generative pretrained transformer (GPT) incorporates 2 distinct modes-real-time search and pretrained model utilization-it encounters challenges in dealing with these tasks. Specifically, the real-time search can pinpoint some relevant articles but occasionally provides fabricated papers, whereas the pretrained model excels in generating well-structured summaries but struggles to cite specific sources. In response, this study introduces RefAI, an innovative retrieval-augmented generative tool designed to synergize the strengths of large language models (LLMs) while overcoming their limitations.

Materials and methods: RefAI utilized PubMed for systematic literature retrieval, employed a novel multivariable algorithm for article recommendation, and leveraged GPT-4 turbo for summarization. Ten queries under 2 prevalent topics ("cancer immunotherapy and target therapy" and "LLMs in medicine") were chosen as use cases and 3 established counterparts (ChatGPT-4, ScholarAI, and Gemini) as our baselines. The evaluation was conducted by 10 domain experts through standard statistical analyses for performance comparison.

Results: The overall performance of RefAI surpassed that of the baselines across 5 evaluated dimensions-relevance and quality for literature recommendation, accuracy, comprehensiveness, and reference integration for summarization, with the majority exhibiting statistically significant improvements (P-values < .05).

Discussion: RefAI demonstrated substantial improvements in literature recommendation and summarization over existing tools, addressing issues like fabricated papers, metadata inaccuracies, restricted recommendations, and poor reference integration.

Conclusion: By augmenting LLM with external resources and a novel ranking algorithm, RefAI is uniquely capable of recommending high-quality literature and generating well-structured summaries, holding the potential to meet the critical needs of biomedical professionals in navigating and synthesizing vast amounts of scientific literature.

Keywords

Algorithms, Information Storage and Retrieval, PubMed, Natural Language Processing, generative pretrained transformer, retrieval-augmented generation, large language model, literature recommendation, text summarization

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.