Faculty, Staff and Student Publications
Publication Date
3-27-2024
Journal
Biometrics
Abstract
We develop a method for hybrid analyses that uses external controls to augment internal control arms in randomized controlled trials (RCTs) where the degree of borrowing is determined based on similarity between RCT and external control patients to account for systematic differences (e.g., unmeasured confounders). The method represents a novel extension of the power prior where discounting weights are computed separately for each external control based on compatibility with the randomized control data. The discounting weights are determined using the predictive distribution for the external controls derived via the posterior distribution for time-to-event parameters estimated from the RCT. This method is applied using a proportional hazards regression model with piecewise constant baseline hazard. A simulation study and a real-data example are presented based on a completed trial in non-small cell lung cancer. It is shown that the case weighted power prior provides robust inference under various forms of incompatibility between the external controls and RCT population.
Keywords
Humans, Computer Simulation, Proportional Hazards Models, Research Design, Bayes Theorem