Faculty, Staff and Student Publications

Publication Date

7-7-2025

Journal

Statistics in Biosciences

DOI

10.1007/s12561-025-09499-0

PMID

40852443

PMCID

PMC12366773

PubMedCentral® Posted Date

8-21-2025

PubMedCentral® Full Text Version

Author MSS

Abstract

The discriminative performance of biomarkers often changes over time and exhibits heterogeneity across subgroups defined by patient characteristics. Assessing how this performance varies with these factors is crucial for a comprehensive evaluation of biomarkers and to identify areas for improvement in sub-populations with poor performance. Additionally, the presence of competing risks complicates the assessment of discriminative performance. Ignoring competing risks can lead to misleading conclusions, as the biomarker's performance for the event of interest, such as disease onset, may be confounded by its performance for competing events, such as death. To address these challenges, we develop a regression model to assess the impact of covariates on the discriminative performance of biomarkers, characterized by the covariate-specific time-dependent Area-undercurve (AUC) for a specific cause. We construct a pseudo partial-likelihood for estimation and inference and establish the asymptotic properties of the proposed estimators. Through simulation studies, we demonstrate the finite sample performance of these estimators, and we apply the proposed method to data from the African American Study of Kidney Disease and Hypertension (AASK).

Keywords

Covariate-specific Time-dependent AUC, Prognostic biomarker, Discriminative performance, Competing Risks

Published Open-Access

yes

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.